GeoIT am Institut für Geodäsie und Geoinformation

Prof. Dr.-Ing. Jan-Henrik Haunert 16.2.2021

Three Tasks of Geodesy

Measure

Represent

Utilize and Design

Inst. Geodesy & Geoinf.

- Astronomical, Physical and Mathematical Geodesy (APMG)
- Remote Sensing
- Geodesy
- Geoinformation
- Geodetic Earth System Science
- Photogrammetry & Robotics
- Urban Planning and Land Management
- Theoretical Geodesy
- Intelligent Information Retrieval and Pattern Recognition

Inst. Geodesy & Geoinf.

Working Groups

- Astronomical, Physical and Mathematical Geodesy (APMG)
- Remote Sensing
- Geodesy
- Geoinformation
- Geodetic Earth System Science
- Photogrammetry & Robotics
- Urban Planning and Land Management
- Theoretical Geodesy
- Intelligent Information Retrieval and Pattern Recognition

Prof. J. Kusche

- Astronomical, Physical and Mathematical Geodesy (APMG)
- Remote Sensing
- Geodesy
- Geoinformation
- Geodetic Earth System Science
- Photogrammetry & Robotics
- Urban Planning and Land Management
- Theoretical Geodesy
- Intelligent Information Retrieval and Pattern Recognition Jun.-Prof. R. Roscher

- Astronomical, Physical and Mathematical Geodesy (APMG)
- Remote Sensing
- Geodesy
- Geoinformation
- Geodetic Earth System Science
- Photogrammetry & Robotics
- Urban Planning and Land Management
- Theoretical Geodesy
- Intelligent Information Retrieval and Pattern Recognition Prof. H. Kuhlmann

6

- Astronomical, Physical and Mathematical Geodesy (APMG)
- Remote Sensing
- Geodesy
- Geoinformation
- Geodetic Earth System Science
- Photogrammetry & Robotics
- Urban Planning and Land Management
- Theoretical Geodesy
- Intelligent Information Retrieval and Pattern Recognic J.-H. Haunert

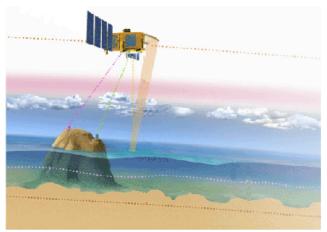
- Astronomical, Physical and Mathematical Geodesy (APMG)
- Remote Sensing
- Geodesy
- Geoinformation
- Geodetic Earth System Science
- Photogrammetry & Robotics
- Urban Planning and Land Management
- Theoretical Geodesy
- Intelligent Information Retrieval and Pattern RJung-RtofnSchindelegger

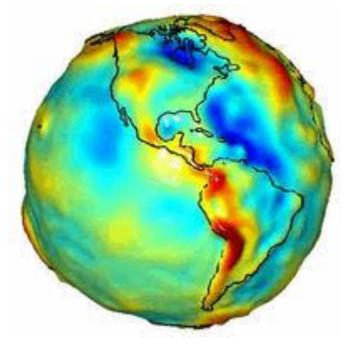
- Astronomical, Physical and Mathematical Geodesy (APMG)
- Remote Sensing
- Geodesy
- Geoinformation
- Geodetic Earth System Science
- Photogrammetry & Robotics
- Urban Planning and Land Management
- Theoretical Geodesy
- Intelligent Information Retrieval and Pattern Recogn Prof. C. Stachniss

- Astronomical, Physical and Mathematical Geodesy (APMG)
- Remote Sensing
- Geodesy
- Geoinformation
- Geodetic Earth System Science
- Photogrammetry & Robotics
- Urban Planning and Land Management
- Theoretical Geodesy
- Intelligent Information Retrieval and Pattern Recognition Prof. T. Kötter

- Astronomical, Physical and Mathematical Geodesy (APMG)
- Remote Sensing
- Geodesy
- Geoinformation
- Geodetic Earth System Science
- Photogrammetry & Robotics
- Urban Planning and Land Management
- Theoretical Geodesy
- Intelligent Information Retrieval and Pattern Recognitio Prof. W.-D. Schuh


- Astronomical, Physical and Mathematical Geodesy (APMG)
- Remote Sensing
- Geodesy
- Geoinformation
- Geodetic Earth System Science
- Photogrammetry & Robotics
- Urban Planning and Land Management
- Theoretical Geodesy
- Intelligent Information Retrieval and Pattern Recognition Prof. J. Fluck



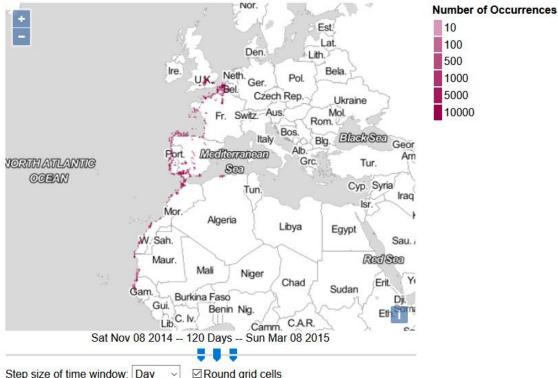


Measure the Earth's shape and its change by satellites

Photogrammetry

- Agricultural robotics
- Autonomous sensor platforms
- 4D crop reconstruction using modern machine learning approaches

Geoinformation


- PhenoRob: Interactive Exploration of Large Volumes of Data
- DFG Project "Zoomless Maps"
- DFG Priority Program VGIScience

PhenoRob: Interactive Exploration of Large Volumes of Data

- Develop efficient data structures for event data.
- Query type:
 - Time window -> cartographic representation

Density Map on Bird Migration

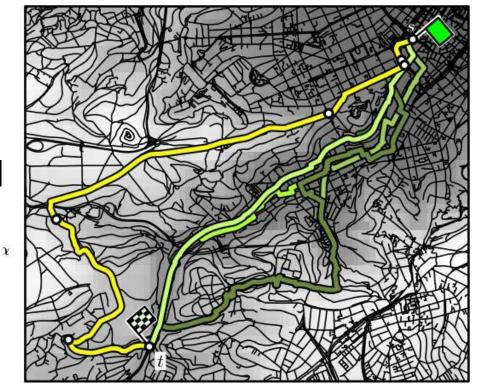
VGI = Volunteered Geographic Information

- Extraction of spatial information, visual analysis, and knowledge presentation taking into account the social context while collecting and using VGI.
- Challenge: heterogeneity and limited semantic structure of VGI.
- 15 Projects in the 2nd funding phase, dealing with Transport, Health, Epidemiology, Social Science, Climate & Environment, Disaster Management

https://www.vgiscience.org/

DFG Priority Program "VGIScience"

Inferring Personalized Multi-criteria Routing Models from Sparse Sets of Voluntarily Contributed Trajectories


Yellow:

Trajectory of a bicyclist

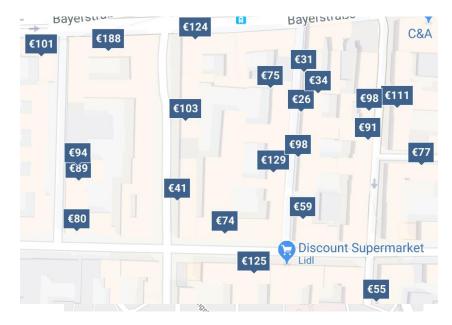
Green:

Routes that are optimal with respect to

 $\begin{array}{l} \alpha \cdot \text{length} \\ + (1 - \alpha) \cdot \text{climb_up} \end{array}$

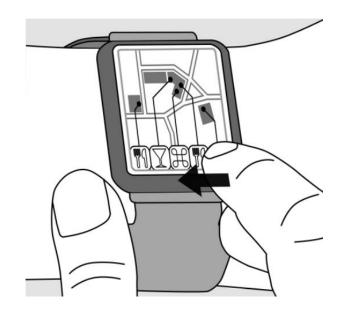
DFG-Project "Zoomless Maps"

Models and algorithms for the interactive exploration of dense maps with a fixed scale



- Conflict-free visualization almost always requires zooming in to a very large scale.
- How can we improve the exploration of the map on a fixed (preferably small) scale?

Models and algorithms for the interactive exploration of dense maps with a fixed scale



- Conflict-free visualization almost always requires zooming in to a very large scale.
- How can we improve the exploration of the map on a fixed (preferably small) scale?

Models and algorithms for the interactive exploration of dense maps with a fixed scale

- Conflict-free visualization almost always requires zooming in to a very large scale.
- How can we improve the exploration of the map on a fixed (preferably small) scale?