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Volunteered Geographic Information

OpenStreetMap.org

flickr.com Twitter.com

GPSies.com

AllTrails.com

high data heterogeneity!
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VGI Trajectory Data

[1] www.nextbike.de/de/bonn

- data quality hard to assess

+ data resembles user’s view

”from user for user”

- user intention unknown

- privacy concerns[2] www.bonn.de/radverkehr

- data heterogeneity
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Use-cases for

matched trajectories:

• lower storage space
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– efficient index
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• . . .

traditional approaches fail for

unrestricted movement patterns
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Routing Preferences

road/path

cyclist 2

cyclist 1

• What can we learn from sparse sets of trajectories, e.g., a
few trajectories recorded by a single user or group of users?

+ better planning

of infrastructure

+ improved route

recommendation
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Bicriteria Preference Model

w1 (2D geom. dist.)

w2 (climb up)

w𝛼 = (1 − 𝛼) · w1 + 𝛼 · w2

How can we learn the parametric

weight 𝛼 from a given trajectory?

Influence factors Personalized weighting

𝛼-optimal path
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Milestone Segmentation

𝛼

4

5

6

7

8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
i
z
e
o
f
o
p
t
i
m
a
l

s
e
g
m
e
n
t
a
t
i
o
n

s

t

b

a c

segment the trajectory into 𝛼-optimal subpaths

𝛼 = 0.56

Compression criterion:
the fewer subpaths are needed, the better 𝛼 matches the routing preference
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Milestone Segmentation
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segment the trajectory into 𝛼-optimal subpaths

𝛼 = 0.80

Compression criterion:
the fewer subpaths are needed, the better 𝛼 matches the routing preference
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Signposted Cycling Routes

signposted

cycleway

road/path

cyclist 2

cyclist 1

w𝛼 (P) = (1 − 𝛼) · wr (P) + 𝛼 · wc (P)

wr (P) = length of all signposted

wc (P) = length of all non-signposted

using this definition makes 𝛼 interpretable:

𝛼 = 0.5

𝛼 = 0.6

⇒ geometric shortest path

⇒ detour of 50% to stick to

signposted ways

sections of path P

sections of path P
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Experiments

0% 10% 20% 30% 40% 50%
𝛼 > 1

2

else

𝛼 < 1
2

share of all trajectories

pro

indiff

con

set of 1 758 trajectories recorded by cyclists in Cologne

grouped according to their preference on signposted paths

cyclists in the group PRO are willing to cover more than 40%

extra distance in order to stick to signposted paths
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Trajectory Processing Toolchain
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Visualization
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Main Contribution

Tool to infer routing
preferences from trajectories

- applicable for all trajectories

- detected significant influence of:

- signposted cycleways

- applicable for single trajectories

- route ascent

- route complexity

on routing behavior
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Future Work

- extend approach for multiple criteria

distance

surface

traffic

complexity scenery

signposts

- validate results based on explicit preferences

- implicit → as shown by behavior

- explicit → as stated by user
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Thank you for your attention!

Brauer, A., Mäkinen, V., Forsch, A., Oksanen, J., Haunert, J. H. (2022). My

home is my secret: concealing sensitive locations by context-aware trajectory

truncation. International Journal of Geographical Information Science, under
review.

Forsch, A., Dehbi, Y., Niedermann, B., Oehrlein, J., Rottmann, P., & Haunert,

J. H. (2021). Multimodal travel-time maps with formally correct and schematic

isochrones. Transactions in GIS, 25, 3233–3256.

Behr, T., van Dijk, T. C., Forsch, A., Haunert, J. H., & Storandt, S. (2021). Map

Matching for Semi-Restricted Trajectories. In 11th International Conference on
Geographic Information Science (GIScience 2021)-Part II. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

Forsch, A., Amann, F., Haunert, J. H. (2022). Visualizing the Off-Screen

Evolution of Trajectories. KN-Journal of Cartography and Geographic
Information, under review.

Forsch, A., Oehrlein, J., Niedermann, B., Haunert, J. H. (2022). Inferring

Routing Preferences of Cyclists from user-Generated Trajectories using a

Compression Criterion. In revision.


